💡专注R语言在🩺生物医学中的使用
设为“星标”,精彩不错过
分解解释高度依赖于预测变量的顺序,解决方法有两个,一个是通过把最重要的变量放在最前面,另一种就是识别变量间的交互作用并使用专门的方法。
但是以上两种方法都不是很好。所以出现了SHAP(SHapley Additive exPlanations),中文称为Shaply加性解释。SHapley加性解释(SHAP)基于Shapley(人名)在博弈论中提出的“Shapley值(Shaply-values)”。SHAP是专为预测模型设计的方法的首字母缩写词。
简单来说,Shaply加性解释就是计算变量间的所有可能的排列,然后计算每个变量的平均贡献(或者叫平均归因)。这种方法叫做重排(permutation)SHAP或者置换SHAP。
作为一种与模型无关(model-agnostic)的解释,这种方法是适用于任何模型的,本文是以随机森林模型为例进行演示的。
如果已经了解了分解解释的原理,那么这里的重排SHAP就非常好理解了。它的详细公式计算过程这里就不展示了,感兴趣的可以自己了解。
今天先介绍下R中的instance-level的SHAP,依然是使用DALEX,3行代码解决!关于SHAP的内容其实还有非常多哈,以后再慢慢介绍。
公众号后台回复shap即可获取SHAP解释合集。
library(DALEX)data("titanic_imputed")# 结果变量变成因子型titanic_imputed$survived <- factor(titanic_imputed$survived)dim(titanic_imputed)
[1] 2207 8
str(titanic_imputed)
'data.frame': 2207 obs. of 8 variables: $ gender : Factor w/ 2 levels "female","male": 2 2 2 1 1 2 2 1 2 2 ... $ age : num 42 13 16 39 16 25 30 28 27 20 ... $ class : Factor w/ 7 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 2 2 3 3 ... $ embarked: Factor w/ 4 levels "Belfast","Cherbourg",..: 4 4 4 4 4 4 2 2 2 4 ... $ fare : num 7.11 20.05 20.05 20.05 7.13 ... $ sibsp : num 0 0 1 1 0 0 1 1 0 0 ... $ parch : num 0 2 1 1 0 0 0 0 0 0 ... $ survived: Factor w/ 2 levels "0","1": 1 1 1 2 2 2 1 2 2 2 ...
建立一个随机森林模型:
library(randomForest)set.seed(123)titanic_rf <- randomForest(survived ~ ., data = titanic_imputed)
建立解释器:
explain_rf <- DALEX::explain(model = titanic_rf, data = titanic_imputed[,-8], y = titanic_imputed$survived == 1, label = "randomforest" )
Preparation of a new explainer is initiated -> model label : randomforest -> data : 2207 rows 7 cols -> target variable : 2207 values -> predict function : yhat.randomForest will be used ( default ) -> predicted values : No value for predict function target column. ( default ) -> model_info : package randomForest , ver. 4.7.1.1 , task classification ( default ) -> model_info : Model info detected classification task but 'y' is a logical . Converted to numeric. ( NOTE ) -> predicted values : numerical, min = 0 , mean = 0.2350131 , max = 1 -> residual function : difference between y and yhat ( default ) -> residuals : numerical, min = -0.886 , mean = 0.08714363 , max = 1 A new explainer has been created!
使用predict_parts解释,方法选择SHAP:
shap_rf <- predict_parts(explainer = explain_rf, new_observation = titanic_imputed[15,-8], type = "shap", B = 25 # 选择多少个排列组合 )shap_rf
min q1 medianrandomforest: age = 18 -0.010423199 0.006507476 0.02422882randomforest: class = 3rd -0.201079293 -0.126367830 -0.06920344randomforest: embarked = Southampton -0.022489352 -0.010681242 -0.01012868randomforest: fare = 9.07 -0.154593566 -0.058991844 -0.02455460randomforest: gender = female 0.293671047 0.384545537 0.43246217randomforest: parch = 1 -0.031936565 0.080251817 0.10775804randomforest: sibsp = 0 0.008140462 0.014347757 0.02413484 mean q3 maxrandomforest: age = 18 0.067138668 0.1240188038 0.19714907randomforest: class = 3rd -0.090971092 -0.0672904395 -0.01977254randomforest: embarked = Southampton -0.006165292 -0.0006504304 0.01238423randomforest: fare = 9.07 -0.037531346 -0.0193303126 0.04265791randomforest: gender = female 0.436079928 0.4822868147 0.54142003randomforest: parch = 1 0.092327612 0.1308228364 0.17770367randomforest: sibsp = 0 0.028108382 0.0478994110 0.05099230
画图:
plot(shap_rf)
图片
这个图中的箱线图表示预测变量在所有排列的分布情况,条形图表示平均值,也就是shaply值。
还可以不展示箱线图:
plot(shap_rf, show_boxplots = F)
图片
DALEX中的plot函数对ggplot2的包装,是可以直接连接ggplot2语法的。
除此之外,我们也可以提取数据自己画图。
library(tidyverse)library(ggsci)shap_rf %>% as.data.frame() %>% mutate(mean_con = mean(contribution), .by = variable) %>% mutate(variable = fct_reorder(variable, abs(mean_con))) %>% ggplot() + geom_bar(data = \(x) distinct(x,variable,mean_con), aes(mean_con, variable,fill= mean_con > 0), alpha = 0.5, stat = "identity")+ geom_boxplot(aes(contribution,variable,fill= mean_con > 0), width = 0.4)+ scale_fill_lancet()+ labs(y = NULL)+ theme(legend.position = "none")
图片
OVER!
SHAP的使用率非常高,在R语言中也有非常多实现SHAP的包,我会写多篇推文,把常用的全都介绍一遍。
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报。